Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Acta Pharm Sin B ; 12(7): 2969-2989, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2262519

RESUMEN

Patients exhibit good tolerance to messenger ribonucleic acid (mRNA) vaccines, and the choice of encoded molecules is flexible and diverse. These vaccines can be engineered to express full-length antigens containing multiple epitopes without major histocompatibility complex (MHC) restriction, are relatively easy to control and can be rapidly mass produced. In 2021, the U.S. Food and Drug Administration (FDA) approved the first mRNA-based coronavirus disease 2019 (COVID-19) vaccine produced by Pfizer and BioNTech, which has generated enthusiasm for mRNA vaccine research and development. Based on the above characteristics and the development of mRNA vaccines, mRNA cancer vaccines have become a research hotspot and have undergone rapid development, especially in the last five years. This review analyzes the advances in mRNA cancer vaccines from various perspectives, including the selection and expression of antigens/targets, the application of vectors and adjuvants, different administration routes, and preclinical evaluation, to reflect the trends and challenges associated with these vaccines.

2.
MedComm ; 3(4), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2147815

RESUMEN

Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID‐19) vaccine candidates. To optimize the immunization strategy of the novel mRNA‐based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID‐19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA‐RBD) and protein subunit vaccine (PS‐RBD) in mice. Compared with homologous immunization of RNA‐RBD or PS‐RBD, heterologous prime‐boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody‐dependent cell‐mediated cytotoxicity for “PS‐RBD prime, RNA‐RBD boost” and robust Th1 type cellular response for “RNA‐RBD prime, PS‐RBD boost”. Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1‐type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein‐based COVID‐19 vaccines. The immunogenicity of vaccines can be enhanced by the optimization of immunization strategies. In this paper, we investigated the immunogenicity of different combined regimens with the mRNA vaccine RNA‐RBD and protein subunit vaccine PS‐RBD. The result showed that compared with homologous immunization, heterologous prime‐boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance NAb and Th1 cellular response, but immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses and Th1 cellular response.

3.
Front Immunol ; 13: 949248, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2022731

RESUMEN

To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.


Asunto(s)
Adenovirus de los Simios , COVID-19 , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunización , Macaca , Ratones , SARS-CoV-2 , Vacunación , Vacunas de Productos Inactivados
4.
Microbiol Spectr ; 10(5): e0226322, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2019798

RESUMEN

We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Interleucina-17 , Esparcimiento de Virus , Virulencia , Vacunas contra la COVID-19 , Factor de Necrosis Tumoral alfa , Macaca mulatta , Interferón gamma , Modelos Animales de Enfermedad
5.
Signal Transduct Target Ther ; 7(1): 69, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1721495

RESUMEN

Emerging SARS-CoV-2 variants and the gradually decreasing neutralizing antibodies over time post vaccination have led to an increase in incidents of breakthrough infection across the world. To investigate the potential protective effect of the recombinant protein subunit COVID-19 vaccine targeting receptor-binding domain (RBD) (PS-RBD) and whole inactivated virus particle vaccine (IV) against the variant strains, in this study, rhesus macaques were immunized with PS-RBD or IV vaccine, followed by a Beta variant (B.1.351) challenge. Although neutralizing activity against the Beta variant was reduced compared with that against the prototype, the decreased viral load in both upper and lower respiratory tracts, milder pathological changes, and downregulated inflammatory cytokine levels in lung tissues after challenge demonstrated that PS-RBD and IV still provided effective protection against the Beta variant in the macaque model. Furthermore, PS-RBD-induced macaque sera possessed general binding and neutralizing activity to Alpha, Beta, Delta, and Omicron variants in our study, though the neutralizing antibody (NAb) titers declined by varying degrees, demonstrating potential protection of PS-RBD against current circulating variants of concern (VOCs). Interestingly, although the IV vaccine-induced extremely low neutralizing antibody titers against the Beta variant, it still showed reduction for viral load and significantly alleviated pathological change. Other correlates of vaccine-induced protection (CoP) like antibody-dependent cellular cytotoxicity (ADCC) and immune memory were both confirmed to be existing in IV vaccinated group and possibly be involved in the protective mechanism.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Humanos , Macaca mulatta , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/farmacología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología
6.
Engineering (Beijing) ; 10: 127-132, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1654383

RESUMEN

Regulatory science is a discipline that uses comprehensive methods of natural science, social science, and humanities to provide support for administrative decision-making through the development of new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of regulated products. During the pandemics induced by infectious diseases, such as H1N1 flu, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), regulatory science strongly supported the development of drugs and vaccines to respond to the viruses. In particular, with the support of research on drug regulatory science, vaccines have played a major role in the prevention and control of coronavirus disease 2019 (COVID-19). This review summarizes the overall state of the vaccine industry, research and development (R&D) of COVID-19 vaccines in China, and the general state of regulatory science and supervision for vaccines in China. Further, this review highlights how regulatory science has promoted the R&D of Chinese COVID-19 vaccines, with analyses from the aspects of national-level planning, relevant laws and regulations, technical guidelines, quality control platforms, and post-marketing supervision. Ultimately, this review provides a reference for the formulation of a vaccine development strategy in response to the current pandemic and the field of vaccine development in the post-pandemic era, as well as guidance on how to better respond to emerging and recurring infectious diseases that may occur in the future.

7.
Signal Transduct Target Ther ; 6(1): 278, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1387234
8.
Emerg Microbes Infect ; 10(1): 1598-1608, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1316786

RESUMEN

Since the outbreak of COVID-19, a variety of vaccine platforms have been developed. Amongst these, inactivated vaccines have been authorized for emergency use or conditional marketing in many countries. To further enhance the protective immune responses in populations that have completed vaccination regimen, we investigated the immunogenic characteristics of different vaccine platforms and tried homologous or heterologous boost strategy post two doses of inactivated vaccines in a mouse model. Our results showed that the humoral and cellular immune responses induced by different vaccines when administered individually differ significantly. In particular, inactivated vaccines showed relatively lower level of neutralizing antibody and T cell responses, but a higher IgG2a/IgG1 ratio compared with other vaccines. Boosting with either recombinant subunit, adenovirus vectored or mRNA vaccine after two-doses of inactivated vaccine further improved both neutralizing antibody and Spike-specific Th1-type T cell responses compared to boosting with a third dose of inactivated vaccine. Our results provide new ideas for prophylactic inoculation strategy of SARS-CoV-2 vaccines.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Inmunización Secundaria , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/inmunología , Animales , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/administración & dosificación , Citocinas , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoglobulina G/inmunología , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas de Productos Inactivados/administración & dosificación
9.
Signal Transduct Target Ther ; 6(1): 199, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1233705

RESUMEN

The outbreak of COVID-19 has posed a huge threat to global health and economy. Countermeasures have revolutionized norms for working, socializing, learning, and travel. Importantly, vaccines have been considered as most effective tools to combat with COVID-19. As of the beginning of 2021, >200 COVID-19 vaccine candidates, covering nearly all existing technologies and platforms, are being research and development (R&D) by multiple manufacturers worldwide. This has posed a huge obstacle to the quality control and evaluation of those candidate vaccines, especially in China, where five vaccine platforms are deployed in parallel. To accelerate the R&D progress of COVID-19 vaccines, the guidances on R&D of COVID-19 vaccine have been issued by National Regulatory Authorities or organizations worldwide. The Center for Drug Evaluation and national quality control laboratory in China have played a leading role in launching the research on quality control and evaluation in collaboration with relevant laboratories involved in the vaccine R&D, which greatly supported the progression of vaccines R&D, and accelerated the approval for emergency use and conditional marketing of currently vaccine candidates. In this paper, the progress and experience gained in quality control and evaluation of COVID-19 vaccines developed in China are summarized, which might provide references for the R&D of current and next generation of COVID-19 vaccines worldwide.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Salud Global , Humanos , Control de Calidad
10.
Front Immunol ; 12: 669339, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1207698

RESUMEN

The world has entered the second wave of the COVID-19 pandemic, and its intensity is significantly higher than that of the first wave of early 2020. Many countries or regions have been forced to start the second round of lockdowns. To respond rapidly to this global pandemic, dozens of COVID-19 vaccine candidates have been developed and many are undergoing clinical testing. Evaluating and defining effective vaccine candidates for human use is crucial for prioritizing vaccination programs against COVID-19. In this review, we have summarized and analyzed the efficacy, immunogenicity and safety data from clinical reports on different COVID-19 vaccines. We discuss the various guidelines laid out for the development of vaccines and the importance of biological standards for comparing the performance of vaccines. Lastly, we highlight the key remaining challenges, possible strategies for addressing them and the expected improvements in the next generation of COVID-19 vaccines.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/normas , COVID-19/prevención & control , SARS-CoV-2/inmunología , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/clasificación , Desarrollo de Medicamentos/normas , Desarrollo de Medicamentos/tendencias , Evaluación de Medicamentos/normas , Humanos , Inmunización/tendencias , Inmunogenicidad Vacunal , Estándares de Referencia , SARS-CoV-2/genética
11.
Emerg Microbes Infect ; 10(1): 629-637, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1124369

RESUMEN

COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. Our results showed that sequential immunization with adenovirus vectored vaccine followed by inactivated/recombinant subunit/mRNA vaccine administration specifically increased levels of neutralizing antibodies and promoted the modulation of antibody responses to predominantly neutralizing antibodies. Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.


Asunto(s)
Vacunas contra el Adenovirus/inmunología , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , Inmunización Secundaria/métodos , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/inmunología , Vacunas contra el Adenovirus/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Interferón gamma/sangre , Recuento de Linfocitos , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/efectos adversos , Vacunas de Subunidad/administración & dosificación , Vacunas Sintéticas/administración & dosificación
13.
Emerg Microbes Infect ; 9(1): 2606-2618, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-944152

RESUMEN

The ongoing COVID-19 pandemic is causing huge impact on health, life, and global economy, which is characterized by rapid spreading of SARS-CoV-2, high number of confirmed cases and a fatality/case rate worldwide reported by WHO. The most effective intervention measure will be to develop safe and effective vaccines to protect the population from the disease and limit the spread of the virus. An inactivated, whole virus vaccine candidate of SARS-CoV-2 has been developed by Wuhan Institute of Biological Products and Wuhan Institute of Virology. The low toxicity, immunogenicity, and immune persistence were investigated in preclinical studies using seven different species of animals. The results showed that the vaccine candidate was well tolerated and stimulated high levels of specific IgG and neutralizing antibodies. Low or no toxicity in three species of animals was also demonstrated in preclinical study of the vaccine candidate. Biochemical analysis of structural proteins and purity analysis were performed. The inactivated, whole virion vaccine was characterized with safe double-inactivation, no use of DNases and high purity. Dosages, boosting times, adjuvants, and immunization schedules were shown to be important for stimulating a strong humoral immune response in animals tested. Preliminary observation in ongoing phase I and II clinical trials of the vaccine candidate in Wuzhi County, Henan Province, showed that the vaccine is well tolerant. The results were characterized by very low proportion and low degree of side effects, high levels of neutralizing antibodies, and seroconversion. These results consistent with the results obtained from preclinical data on the safety.


Asunto(s)
Vacunas contra la COVID-19/inmunología , SARS-CoV-2 , Animales , Anticuerpos Antivirales , Vacunas contra la COVID-19/efectos adversos , Femenino , Inmunidad Humoral , Masculino , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología
14.
Sci Rep ; 10(1): 16615, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: covidwho-834915

RESUMEN

Middle East Respiratory Syndrome coronavirus (MERS-CoV) is a highly virulent pathogen that causes Middle East Respiratory Syndrome (MERS). Anti-MERS-CoV antibodies play an integral role in the prevention and treatment against MERS-CoV infections. Bioactivity is a key quality attribute of therapeutic antibodies, and high accuracy and precision are required. The major methods for evaluating the antiviral effect of antiviral antibodies include neutralization assays using live viruses or pseudoviruses are highly variable. Recent studies have demonstrated that the antibody-dependent cellular cytotoxicity (ADCC) activity of antiviral antibodies is more consistent with the virus clearance effect in vivo than neutralization activity. However, no reports evaluating the ADCC activity of anti-MERS antibodies have been published to date. Here, we describe the development of a robust and reliable cell-based reporter gene assay for the determination of ADCC activity of anti-MERS antibodies using 293T/MERS cells stably expressing the spike protein of MERS-CoV (MERS-S) as target cells and the engineered Jurkat/NFAT-luc/FcγRIIIa stably expressing FcγRIIIA and NFAT reporter gene as effector cells. According to the ICH-Q2 analytical method guidelines, we carefully optimized the experimental conditions and assessed the performance of our assay. In addition, we found that the ADCC activity of afucosylated anti-MERS antibodies is higher than their fucosylated counterparts. The establishment of this ADCC determination system provides a novel method for evaluating the bioactivity of anti-MERS antibodies and improving ADCC activity through modification of N-glycosylation of the Fc segment.


Asunto(s)
Anticuerpos Antivirales/análisis , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Infecciones por Coronavirus/inmunología , Pruebas Inmunológicas de Citotoxicidad/métodos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Coronavirus/virología , Genes Reporteros , Células HEK293 , Humanos , Células Jurkat , Luciferasas/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Factores de Transcripción NFATC/genética , Receptores de IgG/genética , Receptores de IgG/inmunología , Elementos de Respuesta , Glicoproteína de la Espiga del Coronavirus/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA